Source code for atomica.results

"""
Implements interface for working with model outputs

The :class:`Result` class is a wrapper for a :class:`Model` instance,
providing methods to conveniently access, plot, and export model outputs.

"""

from collections import defaultdict

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
import tqdm
import logging
from pathlib import Path

import sciris as sc
from .excel import standard_formats
from .system import FrameworkSettings as FS
from .system import logger, NotFoundError
from .utils import NamedItem, evaluate_plot_string, nested_loop
from .function_parser import parse_function
from .version import version, gitinfo

__all__ = ["Result", "export_results", "Ensemble"]


[docs] class Result(NamedItem): """ Storage for single simulation result A Result object (similar to the ``raw_result`` in Optima HIV) stores a complete simulation run. In Atomica, a Result is a lightweight wrapper around a :class:`Model` object. During a simulation, the :class:`Model` object contains integration objects like compartments, links, and parameters, which store values for each quantity at every time step. The methods in the :class:`Model` class are oriented at performing the calculations required to simulate the model. A :class:`Result` object contains within it a single :class:`Model` object, which in turn contains all of the integration objects together with the data they contain and the relationships between them, as well as the :class:`programs.ProgramSet` and :class:`programs.ProgramInstructions` that were used to perform the simulation. The methods of the :class:`Result` class are oriented at plotting and exporting. :param model: A single :class:`model.Model` instance (after integration :param parset: A :class:`parameters.ParameterSet` instance :param name: The name to use for the new :class:`Result` object """ # A Result stores a single model run def __init__(self, model, parset=None, name=None): if name is None: if parset is None: name = None else: name = parset.name NamedItem.__init__(self, name) self.uid = sc.uuid() self.version = version # Track versioning information for the result. This might change due to migration (whereas by convention, the model version does not) self.gitinfo = gitinfo # The Result constructor is called in model.run_model and the Model is no longer returned. # The following should be the only reference to that instance so no need to dcp. self.model = model # : A completed model run that serves as primary storage for the underlying values self.parset_name = parset.name if parset is not None else None # : The name of the ParameterSet that was used for the simulation self.pop_names = [x.name for x in self.model.pops] # : A list of the population names present. This gets frequently used, so it is saved as an actual output def __setstate__(self, d): from .migration import migrate self.__dict__ = d result = migrate(self) self.__dict__ = result.__dict__ @property def used_programs(self) -> bool: """ Flag whether programs were used or not :return: ``True`` if a progset and program instructions were present. Note that programs will be considered active even if the start/stop years in the instructions don't overlap the simulation years (so no overwrite actually took place). """ return self.model.programs_active @property def framework(self): """ Return framework from Result :return: A :class:`ProjectFramework` instance """ return self.model.framework @property def t(self) -> np.array: """ Return simulation time vector :return: Array of all time points available in the result """ return self.model.t @property def dt(self) -> float: """ Return simulation timestep :return: The simulation timestep (scalar) """ return self.model.dt @property def pop_labels(self): """ Return all population full names The full names/labels are returned in the same order as the names in ``Result.pop_names`` :return: List of population full names """ return [x.label for x in self.model.pops]
[docs] def check_for_nans(self, verbose=True) -> bool: """ Check if any NaNs/Infs are present :param verbose: Print NaN/Inf quantities :return: True if any quantities contain NaNs/Infs """ nans_present = False for pop in self.model.pops: for var in pop.pars + pop.comps + pop.characs + pop.links: if not np.all(np.isfinite(var.vals)): nans_present = True if verbose: print(f"NaNs detected in {var.name} ({pop.name})") return nans_present
[docs] def get_alloc(self, year=None) -> dict: """ Return spending allocation If the result was generated using programs, this method will return the spending on all programs in the requested years. :param year: Optionally specify a scalar or list/array of years to return budget values for. Otherwise, uses all simulation times :return: Dictionary keyed by program name with arrays of spending values """ if self.model.progset is None: return None if year is None: year = self.t return self.model.progset.get_alloc(year, self.model.program_instructions)
[docs] def get_equivalent_alloc(self, year=None) -> dict: """ Return minimal spending allocation for a given year based on the coverage If the result was generated using programs, this method will return the spending on all programs in the requested years. :param year: Optionally specify a scalar or list/array of years to return budget values for. Otherwise, uses all simulation times :return: Dictionary keyed by program name with arrays of spending values """ if self.model.progset is None: return None if year is None: year = self.t prop_coverage = self.get_coverage(quantity="fraction", year=year) num_eligible = self.get_coverage(quantity="eligible", year=year) equivalent_alloc = sc.odict() for prog in prop_coverage.keys(): uc = self.model.progset.programs[prog].unit_cost.interpolate(year) pc = sc.dcp(prop_coverage[prog]) if self.model.progset.programs[prog].saturation.has_data: sat = self.model.progset.programs[prog].saturation.interpolate(year) # If prop_covered is higher than the saturation then set it to nan (without the error that would happen from np.log) pc[pc >= sat] = np.nan # invert the calculation on the proportional coverage to determine the necessary "costed" coverage pc = -sat * np.log((sat - pc) / (sat + pc)) / 2.0 # Calculating the program coverage, capacity constraint is applied first, then saturation, so it needs to happen second when reversing the calculation if self.model.progset.programs[prog].capacity_constraint.has_data: cap = self.model.progset.programs[prog].capacity_constraint.interpolate(year) # If prop_covered is higher than the capacity constraint then set it to nan as it wouldn't be possible to reach that coverage pc[(pc * num_eligible[prog] - cap) > 1e-6] = np.nan # multiply the proportion of naively costed coverage by the number of actually eligible people (catching the case where number covered would be higher than the number eligible) num_costed_coverage = pc * num_eligible[prog] equivalent_alloc[prog] = uc * num_costed_coverage if "/year" in self.model.progset.programs[prog].coverage.units: # it's a one-off program, need to multiply by the time step to annualize spending equivalent_alloc[prog] /= self.dt return equivalent_alloc
[docs] def get_coverage(self, quantity: str = "fraction", year=None) -> dict: """ Return program coverage This function is the primary function to use when wanting to query coverage values. All coverage quantities are accessible via the :class:`Result` object because the compartment sizes and thus eligible people are known. **Caution** - capacity and number covered are returned in units of 'people/year'. They need to be accumulated by integration rather than summation. :param quantity: One of - 'capacity' - Program capacity in units of 'people/year' (for all types of programs) - 'eligible' - The number of people eligible for the program (coverage denominator) in units of 'people' - 'fraction' - ``capacity/eligible``, the fraction coverage (maximum value is 1.0) - this quantity is dimensionless - 'number' - The number of people covered (``fraction*eligible``) returned in units of 'people/year' :param year: Optionally specify a scalar or list/array of years to return budget values for. Otherwise, uses all simulation times :return: Requested values in dictionary ``{prog_name:value}`` in requested years """ from .model import JunctionCompartment if self.model.progset is None: return None capacities = self.model.progset.get_capacities(tvec=self.t, dt=self.dt, instructions=self.model.program_instructions) if quantity == "capacity": output = capacities else: # Get the program coverage denominator num_eligible = defaultdict(float) # This is the coverage denominator, number of people covered by the program # It is a defaultdict because if a virtual product doesn't target a population (due to a population type mismatch) then it won't have an # entry in the dictionary. Setting it to zero here means the number covered will come out as zero rather than a key error for prog in self.model.progset.programs.values(): # For each program for pop_name in prog.target_pops: for comp_name in prog.target_comps: comp = self.get_variable(comp_name, pop_name)[0] if isinstance(comp, JunctionCompartment): vals = comp.outflow else: vals = comp.vals if prog.name not in num_eligible: num_eligible[prog.name] = vals.copy() else: num_eligible[prog.name] += vals # Note that `ProgramSet.get_prop_coverage()` takes in capacity in units of 'people' which matches # the units of 'num_eligible' so we therefore use the returned value from `ProgramSet.get_capacities()` # as-is without doing any annualization prop_coverage = self.model.progset.get_prop_coverage(tvec=self.t, dt=self.dt, capacities=capacities, num_eligible=num_eligible, instructions=self.model.program_instructions) if quantity in {"fraction", "annual_fraction"}: output = prop_coverage elif quantity == "eligible": output = num_eligible elif quantity == "number": output = {x: num_eligible[x] * prop_coverage[x] for x in prop_coverage.keys()} else: raise Exception("Unknown coverage type requested") if quantity in {"capacity", "number", "annual_fraction"}: # Return capacity and number coverage as 'people/year' rather than 'people' for prog in output.keys(): if self.model.progset.programs[prog].is_one_off: output[prog] /= self.dt if year is not None: for k in output.keys(): output[k] = np.interp(sc.promotetoarray(year), self.t, output[k], left=np.nan, right=np.nan) # Linear output interpolation return output
# Convenience methods to list available comps, characs, pars, and links # The population name is required because different populations could have # different contents
[docs] def comp_names(self, pop_name: str) -> list: """ Return compartment names within a population :param pop_name: The code name of one of the populations :return: List of code names of all compartments within that population """ return sorted(self.model.get_pop(pop_name).comp_lookup.keys())
[docs] def charac_names(self, pop_name: str) -> list: """ Return list of characteristic names This method returns all of the characteristic names available within a specified population :param pop_name: The name of one of the populations in the :class:`Result` :return: List of characteristic code names """ return sorted(self.model.get_pop(pop_name).charac_lookup.keys())
[docs] def par_names(self, pop_name: str) -> list: """ Return list of parameter names This method returns all of the parameter names available within a specified population :param pop_name: The name of one of the populations in the :class:`Result` :return: List of parameter code names """ return sorted(self.model.get_pop(pop_name).par_lookup.keys())
def __repr__(self): output = sc.prepr(self) return output
[docs] def get_variable(self, name: str, pops: str = None) -> list: """ Retrieve integration objects This method retrieves an integration object from the model for a given population. It serves as a shortcut for ``model.Population.get_variable()` by incorporating the population lookup in the same step. :param pops: The name of a population :param name: The name of a variable :return: A list of matching variables (integration objects) """ if pops is not None: return self.model.get_pop(pops).get_variable(name) else: vars = [] for pop in self.model.pops: try: vars += pop.get_variable(name) except NotFoundError: pass if not vars: raise NotFoundError(f"Variable '{name}' was not found in any populations") return vars
[docs] def export_raw(self, filename=None) -> pd.DataFrame: """ Save raw outputs This method produces a single Pandas DataFrame with all of the raw model values, and then optionally saves it to an Excel file. :param filename: The file name of the Excel file to write. If not provided, no file will be written :return: A DataFrame with all model outputs """ # Assemble the outputs into a dict d = dict() def gl(name): # Local helper to get name and gracefully deal with transfer parameters that don't appear in the framework try: return self.framework.get_label(name) except NotFoundError: return "-" for pop in self.model.pops: for comp in pop.comps: d[("Compartments", pop.name, comp.name, gl(comp.name))] = comp.vals for charac in pop.characs: d[("Characteristics", pop.name, charac.name, gl(charac.name))] = charac.vals for par in pop.pars: if par.vals is not None: d[("Parameters", pop.name, par.name, gl(par.name))] = par.vals for link in pop.links: # Sum over duplicate links and annualize flow rate if link.parameter is None: link_name = "-" link_label = f"{link.source.name} to {link.dest.name} (flow, no parameter)" else: link_name = link.name link_label = gl(link.parameter.name) if link_label == "-" and link.source.pop is not link.dest.pop: link_label = f"Transfer {link.source.pop.name} to {link.dest.pop.name} (flow)" else: link_label += " (flow)" key = ("Flow rates", pop.name, link_name, link_label) if key not in d: d[key] = np.zeros(self.t.shape) d[key] += link.vals / self.dt # Create DataFrame from dict df = pd.DataFrame(d, index=self.t) df.index.name = "Time" # Optionally save it if filename is not None: output_fname = Path(filename).with_suffix(".xlsx").resolve() df.T.to_excel(output_fname, merge_cells=False) return df
[docs] def plot(self, plot_name=None, plot_group=None, pops=None, project=None): """ Produce framework-defined plot This method plots a single Result instance using the plots defined in the framework. If plot_group is not None, then plot_name is ignored If plot_name and plot_group are both None, then all plots will be displayed :param plot_name: The name of a single plot in the Framework :param plot_group: The name of a plot group :param pops: A population aggregation supposed by PlotData (e.g. 'all') :param project: A Project instance used to plot data and full names :return: List of figure objects """ from .plotting import PlotData, plot_series assert not (plot_name and plot_group), "When plotting a Result, you can specify the plot name or plot group, but not both" df = self.framework.sheets["plots"][0] df = df.dropna(subset=["name", "quantities"]) # Remove any plots that are missing names or quantities if plot_group is None and plot_name is None: for plot_name in df["name"]: self.plot(plot_name, pops=pops, project=project) return elif plot_group is not None: for plot_name in df.loc[df["plot group"] == plot_group, "name"]: self.plot(plot_name=plot_name, pops=pops, project=project) return this_plot = df.loc[df["name"] == plot_name, :].iloc[0] # A Series with the row of the 'Plots' sheet corresponding to the plot we want to render quantities = evaluate_plot_string(this_plot["quantities"]) # Work out which populations these are defined in # Going via Result.get_variable() means that it will automatically # work correctly for flow rate syntax as well if not pops: pops = _filter_pops_by_output(self, quantities) d = PlotData(self, outputs=quantities, pops=pops, project=project) h = plot_series(d, axis="pops", data=(project.data if project is not None else None)) plt.title(this_plot["name"]) return h
def _filter_pops_by_output(result, output) -> list: """ Helper function for plotting quantities With population types, a given output/output aggregation may only be defined in a subset of populations. To deal with this when plotting Result objects, it's necessary to work out which population the requested output aggregation can be plotted in. This function takes in an output definition and returns a list of populations matching this. :param output: An output aggregation string e.g. 'alive' or ':ddis' or {['lt_inf','lteu']} (supported by PlotData/get_variable) :return: A list of population code names """ if sc.isstring(output): vars = result.get_variable(output) elif isinstance(output, list): vars = result.get_variable(output[0]) elif isinstance(output, dict): v = list(output.values())[0] if isinstance(v, list): vars = result.get_variable(v[0]) elif sc.isstring(v): # It could be a function aggregation or it could be a single one _, deps = parse_function(v) vars = result.get_variable(deps[0]) else: raise Exception("Could not determine population type") matching_pops = {x.pop.name for x in vars} return [x for x in result.pop_names if x in matching_pops] # Maintain original population order
[docs] def export_results(results, filename=None, output_ordering=("output", "result", "pop"), cascade_ordering=("pop", "result", "stage"), program_ordering=("program", "result", "quantity")): """Export Result outputs to a file This function writes an XLSX file with the data corresponding to any Cascades or Plots that are present. Note that results are exported for every year by selecting integer years. Flow rates are annualized instantaneously. So for example, the flow will have values from 2014, 2015, 2016, but the 2015 flow rate is the actual flow at 2015.0 divided by dt, not the time-aggregated flow rate. Time-aggregation isn't appropriate here because many of the quantities plotted are probabilities. Selecting the annualized value at a particular year also means that the data being exported will match up with whatever plots are generated from within Atomica. Optionally can specify a list/set of names of the plots/cascades to include in the export Set to an empty list to omit that category e.g. >>> plot_names = None # export all plots in framework >>> plot_names = ['a','b'] # export only plots 'a' and 'b' >>> plot_names = [] # don't export any plots e.g. to only export cascades :param results: A :class:`Result`, or list of `Results`. Results must all have different names. Outputs are drawn from the first result, normally all results would have the same framework and populations. :param filename: Write an excel file. If 'None', no file will be written (but dataframes will be returned) :param output_ordering: A tuple specifying the grouping of outputs, results, and pops for the Plots and targetable parameters sheet. The first item in the tuple will split the dataframes into separate tables. Then within the tables, rows will be grouped by the second item :param cascade_ordering: A similar tuple specifying the groupings for the cascade sheets. The cascade tables are always split by cascade first, so the order in this tuple only affects the column ordering :param program_ordering: A similar tuple specifying the groupings for the program sheets :return: The name of the file that was written """ # Check all results have unique names if isinstance(results, dict): results = list(results.values()) else: results = sc.promotetolist(results) result_names = [x.name for x in results] if len(set(result_names)) != len(result_names): raise Exception("Results must have different names (in their result.name property)") # Check all results have the same time range for result in results: if result.t[0] != results[0].t[0] or result.t[-1] != results[0].t[-1]: raise Exception("All results must have the same start and finish years") if set(result.pop_names) != set(results[0].pop_names): raise Exception("All results must have the same populations") # Interpolate all outputs onto these years new_tvals = np.arange(np.ceil(results[0].t[0]), np.floor(results[0].t[-1]) + 1) # Open the output file output_fname = Path(filename).with_suffix(".xlsx").resolve() writer = pd.ExcelWriter(output_fname, engine="xlsxwriter") formats = standard_formats(writer.book) # Write the plots sheet if any plots are available if "plots" in results[0].framework.sheets: plots_available = results[0].framework.sheets["plots"][0] if not plots_available.empty: plot_df = [] for _, spec in plots_available.iterrows(): if "type" in spec and spec["type"] == "bar": continue # For now, don't do bars - not implemented yet plot_df.append(_output_to_df(results, output_name=spec["name"], output=evaluate_plot_string(spec["quantities"]), tvals=new_tvals, time_aggregate=False)) _write_df(writer, formats, "Plot data annualized", pd.concat(plot_df), output_ordering) plot_df = [] for _, spec in plots_available.iterrows(): if "type" in spec and spec["type"] == "bar": continue # For now, don't do bars - not implemented yet plot_df.append(_output_to_df(results, output_name=spec["name"], output=evaluate_plot_string(spec["quantities"]), tvals=new_tvals, time_aggregate=True)) _write_df(writer, formats, "Plot data annual aggregated", pd.concat(plot_df), output_ordering) # Write cascades into separate sheets cascade_df = [] for name in results[0].framework.cascades.keys(): cascade_df.append(_cascade_to_df(results, name, new_tvals)) if cascade_df: # always split tables by cascade, since different cascades can have different stages or the same stages with different definitions # it's thus potentially very confusing if the tables are split by something other than the cascade _write_df(writer, formats, "Cascade", pd.concat(cascade_df), ("cascade",) + cascade_ordering) # If there are targetable parameters, output them targetable_code_names = list(results[0].framework.pars.index[results[0].framework.pars["targetable"] == "y"]) if targetable_code_names: par_df = [] for par_name in targetable_code_names: par_df.append(_output_to_df(results, output_name=par_name, output=par_name, tvals=new_tvals)) _write_df(writer, formats, "Target parameters annualized", pd.concat(par_df), output_ordering) # If any of the results used programs, output them if any([x.used_programs for x in results]): # Work out which programs are present prog_names = list() for result in results: if result.used_programs: prog_names += list(result.model.progset.programs.keys()) prog_names = list(dict.fromkeys(prog_names)) prog_df = [] for prog_name in prog_names: prog_df.append(_programs_to_df(results, prog_name, new_tvals, time_aggregate=False)) _write_df(writer, formats, "Programs annualized", pd.concat(prog_df), program_ordering) prog_df = [] for prog_name in prog_names: prog_df.append(_programs_to_df(results, prog_name, new_tvals, time_aggregate=True)) _write_df(writer, formats, "Programs annual aggregated", pd.concat(prog_df), program_ordering) writer.close() return output_fname
def _programs_to_df(results, prog_name, tvals, time_aggregate=False): """ Return a DataFrame for program outputs for a group of results The dataframe will have a three-level MultiIndex for the program, result, and program quantity (e.g. spending, coverage fraction) :param results: List of Results :param prog_name: The name of a program :param tvals: Outputs will be interpolated onto the times in this array (typically would be annual) :param time_aggregate: False means output annualized Jan 1 values, True means use time_aggregation to sum or average the timestep values over the year for each parameter. :return: A DataFrame """ from .plotting import PlotData data = dict() for result in results: if result.used_programs and prog_name in result.model.progset.programs: programs_active = (result.model.program_instructions.start_year <= tvals) & (tvals <= result.model.program_instructions.stop_year) out_quantities = { "spending": "Spending ($)" if time_aggregate else "Spending ($/year)", "equivalent_spending": "Equivalent spending ($)" if time_aggregate else "Equivalent spending ($/year)", "coverage_number": "People covered" if time_aggregate else "People covered (people/year)", "coverage_eligible": "People eligible", "coverage_fraction": "Proportion covered", } for quantity, label in out_quantities.items(): plot_data = PlotData.programs(result, outputs=prog_name, quantity=quantity) vals = plot_data.time_aggregate(_extend_tvals(tvals)) if time_aggregate else plot_data.interpolate(tvals) vals.series[0].vals[~programs_active] = np.nan data[(prog_name, result.name, label)] = vals.series[0].vals df = pd.DataFrame(data, index=tvals) df = df.T df.index = df.index.set_names(["program", "result", "quantity"]) # Set the index names correctly so they can be reordered easily return df def _extend_tvals(tvals): """ Given a list of time values, add an extra time value to the end to allow these time values to be used with time_integration instead of interpolate :param tvals: array or list of time values (ints) """ assert isinstance(tvals, (list, np.ndarray)), "Time values must be an array or list " if len(tvals) == 0: return tvals # no time values to add to, return as is (empty list or array) else: for tv in range(1, len(tvals)): assert tvals[tv] == tvals[tv - 1] + 1, "Time values should be one year apart, otherwise time integration may produce inconsistent results, use interpolation instead" return np.append(tvals, [tvals[-1] + 1]) # return the list or array with one more year added on to the end def _cascade_to_df(results, cascade_name, tvals): """ Return a DataFrame for a cascade for a group of results The dataframe will have a three-level MultiIndex for the result, population, and cascade stage :param results: List of Results :param cascade_name: The name or index of a cascade stage (interpretable by get_cascade_vals) :param tvals: Outputs will be interpolated onto the times in this array (typically would be annual) :return: A DataFrame """ from .cascade import get_cascade_vals, sanitize_cascade # Find the cascade pop type _, cascade_dict, pop_type = sanitize_cascade(results[0].framework, cascade_name) # Prepare the population names and time values pop_names = dict() pop_names["all"] = "Entire population" for pop in results[0].model.pops: if pop.type == pop_type: pop_names[pop.name] = pop.label cascade_df = [] for pop, label in pop_names.items(): data = sc.odict() for result in results: cascade_vals, _ = get_cascade_vals(result, cascade_name, pops=pop, year=tvals) for stage, vals in cascade_vals.items(): data[(cascade_name, pop_names[pop], result.name, stage)] = vals df = pd.DataFrame(data, index=tvals) df = df.T df.index = df.index.set_names(["cascade", "pop", "result", "stage"]) # Set the index names correctly so they can be reordered easily cascade_df.append(df) return pd.concat(cascade_df) def _output_to_df(results, output_name: str, output, tvals, time_aggregate=False) -> pd.DataFrame: """ Convert an output to a DataFrame for a group of results This function takes in a list of results, and an output specification recognised by :class:`PlotData`. It extracts the outputs from all results and stores them in a 3-level MultiIndexed dataframe, which is returned. The index levels are the name of the output, the name of the results, and the populations. In addition, this function attempts to aggregate the outputs, if the units of the outputs matches known units. If the units lead to anver obvious use of summation or weighted averating, it will be used. Otherwise, the output will contain NaNs for the population-aggregated results, which will appear as empty cells in the Excel spreadsheet so the user is able to fill them in themselves. :param results: List of Results :param output_name: The name to use for the output quantity :param output: An output specification/aggregation supported by :class:`PlotData` :param tvals: Outputs will be interpolated onto the times in this array (typically would be annual) :param time_aggregate: False means output annualized Jan 1 values, True means use time_aggregation to sum or average the timestep values over the year for each parameter. :return: A DataFrame """ from .plotting import PlotData pops = _filter_pops_by_output(results[0], output) pop_labels = {x: y for x, y in zip(results[0].pop_names, results[0].pop_labels) if x in pops} data = dict() popdata = PlotData(results, pops=pops, outputs=output) assert len(popdata.outputs) == 1, "Framework plot specification should evaluate to exactly one output series - there were %d" % (len(popdata.outputs)) if time_aggregate: popdata.time_aggregate(_extend_tvals(tvals)) else: popdata.interpolate(tvals) for result in popdata.results: for pop_name in popdata.pops: data[(output_name, popdata.results[result], pop_labels[pop_name])] = popdata[result, pop_name, popdata.outputs[0]].vals # Now do a population total. Need to check the units after any aggregations # Check results[0].model.pops[0].comps[0].units just in case someone changes it later on if popdata.series[0].units in {FS.QUANTITY_TYPE_NUMBER, results[0].model.pops[0].comps[0].units}: # Number units, can use summation popdata = PlotData(results, outputs=output, pops={"total": pops}, pop_aggregation="sum") if time_aggregate: popdata.time_aggregate(_extend_tvals(tvals)) else: popdata.interpolate(tvals) for result in popdata.results: data[(output_name, popdata.results[result], "Total (sum)")] = popdata[result, popdata.pops[0], popdata.outputs[0]].vals elif popdata.series[0].units in {FS.QUANTITY_TYPE_FRACTION, FS.QUANTITY_TYPE_PROPORTION, FS.QUANTITY_TYPE_PROBABILITY}: popdata = PlotData(results, outputs=output, pops={"total": pops}, pop_aggregation="weighted") if time_aggregate: popdata.time_aggregate(_extend_tvals(tvals)) else: popdata.interpolate(tvals) for result in popdata.results: data[(output_name, popdata.results[result], "Total (weighted average)")] = popdata[result, popdata.pops[0], popdata.outputs[0]].vals else: for result in popdata.results: data[(output_name, popdata.results[result], "Total (unknown units)")] = np.full(tvals.shape, np.nan) df = pd.DataFrame(data, index=tvals) df = df.T df.index = df.index.set_names(["output", "result", "pop"]) # Set the index names correctly so they can be reordered easily return df def _write_df(writer, formats, sheet_name, df, level_ordering): """ Write a list of DataFrames into a worksheet :param writer: A Pandas ExcelWriter instance specifying the file to write into :param formats: The output of `standard_formats(workbook)` specifying the styles embedded in the workbook :param sheet_name: The name of the sheet to create. It is assumed that this sheet will be generated entirely by this function call (i.e. the sheet is not already present) :param df: A DataFrame that has a MultiIndex :param level_ordering: Tuple of index level names. Split the dataframe such that a separate table is generated for the first level, and then the rows are reordered by the remaining levels and the original sort order is preserved. The contents of this tuple need to match the levels present in the dataframe :return: None """ # Substitute full names for short names after re-ordering the levels but before # writing the dataframe level_substitutions = {"pop": "Population", "stage": "Cascade stage", "quantity": "Quantity (on Jan 1)"} # Remember the ordering of each index level order = {} for level in level_ordering: order[level] = list(dict.fromkeys(df.index.get_level_values(level))) required_width = [0] * (len(level_ordering) - 1) row = 0 worksheet = writer.book.add_worksheet(sheet_name) writer.sheets[sheet_name] = worksheet # Need to add it to the ExcelWriter for it to behave properly for title, table in df.groupby(level=level_ordering[0], sort=False): worksheet.write_string(row, 0, title, formats["center_bold"]) row += 1 table.reset_index(level=level_ordering[0], drop=True, inplace=True) # Drop the title column table = table.reorder_levels(level_ordering[1:]) for i in range(1, len(level_ordering)): table = table.reindex(order[level_ordering[i]], level=i - 1) table.index = table.index.set_names([level_substitutions[x] if x in level_substitutions else x.title() for x in table.index.names]) table.to_excel(writer, sheet_name=sheet_name, startcol=0, startrow=row, merge_cells=False) row += table.shape[0] + 2 required_width[0] = max(required_width[0], len(title)) for i in range(0, len(required_width)): required_width[i] = max(required_width[i], max(table.index.get_level_values(i).str.len())) for i in range(0, len(required_width)): if required_width[i] > 0: worksheet.set_column(i, i, required_width[i] * 1.1 + 1)
[docs] class Ensemble(NamedItem): """ Class for working with sampled Results This class facilitates working with results and sampling. It manages the mapping of sets of results onto a scalar, which is then accumulated over samples. For example, we might sample from a ParameterSet and then run simulations with 2 different allocations to compare their expected difference. The Ensemble contains - A reduction function that maps from Results^N => R^M where typically M would index :param mapping_function: A function that takes in a Result, or a list/dict of Results, and returns a single PlotData instance :param name: Name for the Ensemble (will appear on plots) :param baseline: Optionally provide the non-sampled results at instantiation :param kwargs: Additional arguments to pass to the mapping function """ def __init__(self, mapping_function=None, name: str = None, baseline_results=None, **kwargs): NamedItem.__init__(self, name) self.mapping_function = mapping_function #: This function gets called by :meth:`Ensemble.add_sample` self.samples = [] #: A list of :class:`PlotData` instances, one for each sample self.baseline = None #: A single PlotData instance with reference values (i.e. outcome without sampling) if baseline_results: self.set_baseline(baseline_results, **kwargs)
[docs] def run_sims(self, proj, parset, progset=None, progset_instructions=None, result_names=None, n_samples: int = 1, parallel=False, max_attempts=None) -> None: """ Run and store sampled simulations Use this method to perform sampling if there is insufficient memory available to store all simulations prior to inserting into the Ensemble. This method adds Results to the Ensemble one at a time, so the memory required is never more than the number of Results taken in by the mapping function (typically this would either be 1, or the number of budget scenarios being compared). Note that a separate function, `_sample_and_map` is used, which does the conversion to ``PlotData``. This is so that the data reduction is performed on the parallel workers so that ``Multiprocessing`` only accumulates ``PlotData`` rather than ``Result`` instances. :param proj: A :class:`Project` instance :param n_samples: An integer number of samples :param parset: A :class:`ParameterSet` instance :param progset: Optionally a :class:`ProgramSet` instance :param progset_instructions: This can be a list of instructions :param result_names: Optionally specify names for each result. The most common usage would be when passing in a list of program instructions corresponding to different budget scenarios. The result names should be a list the same length as the instructions, or containing a single element if not using programs. :param parallel: If True, run simulations in parallel (on Windows, must have ``if __name__ == '__main__'`` gating the calling code) :param max_attempts: Number of retry attempts for bad initializations """ self.samples = [] # Drop the old samples if parallel: # NB. The calling code must be wrapped in a 'if __name__ == '__main__' # Currently not passing in any extra kwargs but that should be easy to add if/when required # (main reason for deferring implementation is so as to have suitable test code when developing) self.samples = sc.parallelize(_sample_and_map, iterarg=n_samples, kwargs={"mapping_function": self.mapping_function, "max_attempts": max_attempts, "proj": proj, "parset": parset, "progset": progset, "progset_instructions": progset_instructions, "result_names": result_names}) else: original_level = logger.getEffectiveLevel() logger.setLevel(logging.WARNING) # Never print debug messages inside the sampling loop - note that depending on the platform, this may apply within `sc.parallelize` if original_level <= logging.INFO: range_iterator = tqdm.trange(n_samples) else: range_iterator = range(n_samples) for _ in range_iterator: sample = _sample_and_map(mapping_function=self.mapping_function, proj=proj, parset=parset, progset=progset, progset_instructions=progset_instructions, result_names=result_names, max_attempts=max_attempts) self.samples.append(sample) logger.setLevel(original_level) # Reset the logger # Finally, set the colours for the first sample self.samples[0].set_colors(pops=self.samples[0].pops, outputs=self.samples[0].outputs)
@property def n_samples(self) -> int: """ Return number of samples present :return: Number of samples contained in the :class:`Ensemble` """ return len(self.samples) @property def outputs(self) -> list: """ Return a list of outputs The outputs are retrieved from the first sample, or the baseline if no samples are present yet, or an empty list if no samples present. It is generally assumed that the baseline and all samples should have the same outputs and populations, because they should have all been generated with the same mapping function :return: A list of outputs (strings) """ if self.samples: return list(self.samples[0].outputs.keys()) elif self.baseline: return list(self.baseline.outputs.keys()) else: return list() @property def tvec(self) -> np.array: """ Return time vector The time vector are retrieved from the first sample, or the baseline if no samples are present yet, or an empty list if no samples present. :return: A time array from one of the stores :class:`PlotData` instances """ if self.samples: return self.samples[0].series[0].tvec elif self.baseline: return self.baseline[0].series[0].tvec else: return np.empty(0) @property def pops(self) -> list: """ Return a list of populations The pops are retrieved from the first sample, or the baseline if no samples are present yet, or an empty list if no samples present. It is generally assumed that the baseline and all samples should have the same outputs and populations, because they should have all been generated with the same mapping function :return: A list of population names (strings) """ if self.samples: return list(self.samples[0].pops.keys()) elif self.baseline: return list(self.baseline.pops.keys()) else: return list() @property def results(self) -> list: """ Return a list of result names The result names are retrieved from the first sample, or the baseline if no samples are present yet, or an empty list if no samples present. It is generally assumed that the results will all have the same name in the case that this Ensemble contains multiple PlotData samples. Otherwise, a key error may occur. :return: A list of population names (strings) """ if self.samples: return list(self.samples[0].results.keys()) elif self.baseline: return list(self.baseline.results.keys()) else: return list() def _get_series(self) -> dict: """ Flatten the series in samples The Ensemble contains a list of `PlotData` containing a list of `Series`. Computing uncertainty requires iterating over the Series for a a particular result, pop, and output. This function returns a dict keyed by a ``(result,pop,output)`` tuple with a list of references to the underlying series. Thus, the series are organized either by `self.samples` which facilitates adding new samples, and `self._get_series` which facilitates computing uncertainties after the fact. :return: A dict keyed by result-pop-output containing lists of sampled Series """ series_lookup = defaultdict(list) for sample in self.samples: for series in sample.series: series_lookup[(series.result, series.pop, series.output)].append(series) return sc.odict(series_lookup)
[docs] def set_baseline(self, results, **kwargs) -> None: """ Add a baseline to the Ensemble This function assigns a special result corresponding to the unsampled case as a reference. This result can be rendered in a different way on plots - for example, as a vertical line on density estimates, or a solid line on a time series plot. :param results: A Result, or list/dict of Results, as supported by the mapping function :param kwargs: Any additional keyword arguments to pass to the mapping function """ from .plotting import PlotData plotdata = self.mapping_function(results, **kwargs) assert isinstance(plotdata, PlotData) # Make sure the mapping function returns the correct type # assert len(plotdata.results) == 1, 'The mapping function must return a PlotData instance with only one Result' self.baseline = plotdata.set_colors(pops=plotdata.pops, outputs=plotdata.outputs)
[docs] def add(self, results, **kwargs) -> None: """ Add a sample to the Ensemble This function takes in Results and optionally any other arguments needed by the Ensemble's mapping function. It calls the mapping function and adds the resulting PlotData instance to the list of samples. :param results: A Result, or list/dict of Results, as supported by the mapping function :param kwargs: Any additional keyword arguments to pass to the mapping function """ from .plotting import PlotData plotdata = self.mapping_function(results, **kwargs) assert isinstance(plotdata, PlotData) # Make sure the mapping function returns the correct type # assert len(plotdata.results) == 1, 'The mapping function must return a PlotData instance with only one Result' if not self.samples: # Set the colors on the first PlotData to be added - for performance, only do this for the first sample plotdata.set_colors(pops=plotdata.pops, outputs=plotdata.outputs) self.samples.append(plotdata)
[docs] def update(self, result_list, **kwargs) -> None: """ Add multiple samples to the Ensemble The implementation of :meth:`add` vs :meth`update` parallels the behaviour of Python built-in sets, where :meth:`set.add` is used to add a single item, and :meth:`set.update` is used to add multiple items. This function is intended for cases where the user has stores multiple samples in memory and wants to dynamically construct Ensembles after the fact. The input list here is an iterable, and :meth:`Ensemble.add` gets called on every item in the list. It is up to the mapping function then to handle whether the items in `result_list` are single :class:`Result` instances or lists/tuples/dicts of Results. :param result_list: A list of samples, as supported by the mapping function (i.e. the individual items would work with :meth:`Ensemble.add`) :param kwargs: Any additional keyword arguments to pass to the mapping function """ for sample in result_list: self.add(sample, **kwargs)
[docs] def plot_distribution(self, year: float = None, fig=None, results=None, outputs=None, pops=None): """ Plot a kernel density distribution This method will plot kernel density estimates for all outputs and populations in the Ensemble. The :class:`PlotData` instances stored in the Ensemble could contain more than one output/population. To facilitate superimposing Ensembles, by default they will all be plotted into the figure. Specifying a string or list of strings for the outputs and pops will select a subset of the quantities to plot. Most of the time, an Ensemble would only have one output/pop, so it probably wouldn't matter. :param year: If ``None``, plots the first time index, otherwise, interpolate to the target year :param fig: Optionally specify a figure handle to plot into :param results: Optionally specify list of result names :param outputs: Optionally specify list of outputs :param pops: Optionally specify list of pops :return: A matplotlib figure (note that this method will only ever return a single figure) """ if not self.samples: raise Exception("Cannot plot samples because no samples have been added yet") results = sc.promotetolist(results) if results is not None else self.results outputs = sc.promotetolist(outputs) if outputs is not None else self.outputs pops = sc.promotetolist(pops) if pops is not None else self.pops if fig is None: fig = plt.figure() ax = plt.gca() series_lookup = self._get_series() for result in results: for output in outputs: for pop in pops: # Assemble the outputs if year is None: vals = np.array([x.vals[0] for x in series_lookup[result, pop, output]]) else: vals = np.array([x.interpolate(year) for x in series_lookup[result, pop, output]]) # color = series_lookup[output,pop][0].color value_range = (vals.min(), vals.max()) if value_range[0] == value_range[1]: color = None logger.warning("All values for %s-%s are the same, so no distribution will be visible" % (output, pop)) else: kernel = stats.gaussian_kde(vals.ravel()) scale_up_range = 1.5 # Increase kernel density x range span = np.average(value_range) + np.diff(value_range) * [-1, 1] / 2 * scale_up_range x = np.linspace(*span, 100) # TODO - expand this range a bit h = plt.plot(x, kernel(x), label="%s: %s-%s-%s" % (self.name, result, pop, output))[0] color = h.get_color() if self.baseline: series = self.baseline[result, pop, output] val = series.vals[0] if year is None else series.interpolate(year) plt.axvline(val, color=color, linestyle="dashed") proposed_label = "%s (%s)" % (output, series_lookup[result, pop, output][0].unit_string) if ax.xaxis.get_label().get_text(): assert proposed_label == ax.xaxis.get_label().get_text(), "The outputs being superimposed have different units" else: plt.xlabel(proposed_label) plt.legend() plt.ylabel("Probability density") return fig
[docs] def plot_series(self, fig=None, style="quartile", results=None, outputs=None, pops=None, legend=True): """ Plot a time series with uncertainty :param fig: Optionally specify the figure to render into :param style: Specify whether to plot transparent lines ('samples'), or shaded areas for uncertainty. For shaded areas, the style can be 'std', 'ci', or 'quartile' depending on how the size of the area should be computed :param results: Select specific results to display :param outputs: Select specific outputs to display :param pops: Select specific populations to display :return: The figure object that was rendered into """ assert style in {"samples", "quartile", "ci", "std"} if not self.samples: raise Exception("Cannot plot samples because no samples have been added yet") results = sc.promotetolist(results) if results is not None else self.results outputs = sc.promotetolist(outputs) if outputs is not None else self.outputs pops = sc.promotetolist(pops) if pops is not None else self.pops if fig is None: fig = plt.figure() ax = plt.gca() series_lookup = self._get_series() for result in results: for output in outputs: for pop in pops: these_series = series_lookup[result, pop, output] vals = np.vstack([x.vals.ravel() for x in these_series]) # Turn samples into a matrix if self.baseline: baseline_series = self.baseline[result, pop, output] plt.plot(baseline_series.tvec, baseline_series.vals, color=baseline_series.color, label="%s: %s-%s-%s (baseline)" % (self.name, result, pop, output))[0] else: plt.plot(these_series[0].tvec, np.mean(vals, axis=0), color=these_series[0].color, linestyle="dashed", label="%s: %s-%s-%s (mean)" % (self.name, result, pop, output))[0] if style == "samples": for series in these_series: plt.plot(series.tvec, series.vals, color=series.color, alpha=0.05) elif style == "quartile": ax.fill_between(these_series[0].tvec, np.quantile(vals, 0.25, axis=0), np.quantile(vals, 0.75, axis=0), alpha=0.15, color=these_series[0].color) elif style == "ci": ax.fill_between(these_series[0].tvec, np.quantile(vals, 0.025, axis=0), np.quantile(vals, 0.975, axis=0), alpha=0.15, color=these_series[0].color) elif style == "std": if self.baseline: ax.fill_between(baseline_series.tvec, baseline_series.vals - np.std(vals, axis=0), baseline_series.vals + np.std(vals, axis=0), alpha=0.15, color=baseline_series.color) else: ax.fill_between(these_series[0].tvec, np.mean(vals, axis=0) - np.std(vals, axis=0), np.mean(vals, axis=0) + np.std(vals, axis=0), alpha=0.15, color=these_series[0].color) else: raise Exception("Unknown style") proposed_label = "%s (%s)" % (output, these_series[0].unit_string) if ax.yaxis.get_label().get_text(): assert proposed_label == ax.yaxis.get_label().get_text(), "The outputs being superimposed have different units" else: ax.set_ylabel(proposed_label) ax.set_xlabel("Year") if legend: ax.legend() return fig
[docs] def plot_bars(self, fig=None, years=None, results=None, outputs=None, pops=None, order=("years", "results", "outputs", "pops"), horizontal=False, offset: float = None): """ Render a bar plot Very similar to a boxplot, the bar plot with error bars doesn't support stacking (because it can be misleading when stacking bars with errors, since the errors apply cumulatively within the bar). If an existing figure is provided, this function will attempt to add to the existing figure by offsetting the new bars relative to the current axis limits. This is intended to facilitate comparing bar plots across multiple Ensembles. :param fig: Optionally specify an existing figure to plot into :param years: Optionally specify years - otherwise, first time point will be used. Data is interpolated onto this year :param results: Optionally specify list of result names :param outputs: Optionally specify list of outputs :param pops: Optionally specify list of pops :param order: An iterable specifying the order in which bars appear - should be a permutation of ``('years','results','outputs','pops')`` :param horizontal: If True, bar plot will be horizontal :param offset: Offset value to apply to the position of the bar. If ``None``, will be automatically determined based on existing plot contents. :return: A matplotlib figure (note that this method will only ever return a single figure) """ if not self.samples: raise Exception("Cannot plot samples because no samples have been added yet") results = sc.promotetolist(results) if results is not None else self.results outputs = sc.promotetolist(outputs) if outputs is not None else self.outputs pops = sc.promotetolist(pops) if pops is not None else self.pops if years is None: years = [None] else: years = sc.promotetolist(years) if fig is None: fig, ax = plt.subplots() offset = 0 else: ax = fig.axes[0] if horizontal: offset = np.floor(max(ax.get_ylim())) + 1 else: offset = np.floor(max(ax.get_xlim())) + 1 series_lookup = self._get_series() x = [] baselines = [] labels = [] base_order = ("years", "results", "outputs", "pops") for year, result, output, pop in nested_loop([years, results, outputs, pops], map(base_order.index, order)): if year is None: vals = np.array([x.vals[0] for x in series_lookup[result, pop, output]]) year_val = series_lookup[result, pop, output][0].tvec[0] labels.append("%s: %s-%s-%s (%g)" % (self.name, result, pop, output, year_val)) else: vals = np.array([x.interpolate(year) for x in series_lookup[result, pop, output]]) labels.append("%s: %s-%s-%s (%g)" % (self.name, result, pop, output, year)) if self.baseline: if year is None: baselines.append(self.baseline[result, pop, output].vals[0]) else: baselines.append(self.baseline[result, pop, output].interpolate(year)[0]) else: baselines.append(np.mean(vals)) x.append(vals.ravel()) locations = offset + np.arange(len(x)) sample_array = np.vstack(x).T sample_errors = np.std(sample_array, axis=0) for location, baseline, error, label in zip(locations, baselines, sample_errors, labels): if horizontal: ax.barh(location, baseline, xerr=error, capsize=10, label=label, height=0.5) else: ax.bar(location, baseline, yerr=error, capsize=10, label=label, width=0.5) ax.legend() proposed_label = "%s (%s)" % (output, series_lookup[result, pop, output][0].unit_string) if horizontal: ax.set_ylim(-0.5, locations[-1] + 0.5) if ax.xaxis.get_label().get_text(): assert proposed_label == ax.xaxis.get_label().get_text(), "The outputs being superimposed have different units" else: plt.xlabel(proposed_label) ax.set_yticks([]) else: ax.set_xlim(-0.5, locations[-1] + 0.5) if ax.yaxis.get_label().get_text(): assert proposed_label == ax.yaxis.get_label().get_text(), "The outputs being superimposed have different units" else: plt.ylabel(proposed_label) ax.set_xticks([]) return fig
[docs] def boxplot(self, fig=None, years=None, results=None, outputs=None, pops=None): """ Render a box plot This is effectively an alternate approach to rendering the kernel density estimates for the distributions. The figure will have a box plot showing quantiles as whiskers for each quantity selected, filtered by the results, outputs, and pops arguments. :param fig: Optionally specify an existing figure to plot into :param years: Optionally specify years - otherwise, first time point will be used :param results: Optionally specify list of result names :param outputs: Optionally specify list of outputs :param pops: Optionally specify list of pops :return: A matplotlib figure (note that this method will only ever return a single figure) """ if not self.samples: raise Exception("Cannot plot samples because no samples have been added yet") results = sc.promotetolist(results) if results is not None else self.results outputs = sc.promotetolist(outputs) if outputs is not None else self.outputs pops = sc.promotetolist(pops) if pops is not None else self.pops if years is None: years = [None] else: years = sc.promotetolist(years) if fig is None: fig, ax = plt.subplots() offset = 0 else: ax = fig.axes[0] offset = len(ax.get_xticks()) series_lookup = self._get_series() x = [] baseline = [] labels = [] for year in years: for result in results: for output in outputs: for pop in pops: if self.baseline: if year is None: baseline.append(self.baseline[result, pop, output].vals[0]) else: baseline.append(self.baseline[result, pop, output].interpolate(year)[0]) if year is None: vals = np.array([x.vals[0] for x in series_lookup[result, pop, output]]) year_val = series_lookup[result, pop, output][0].tvec[0] labels.append("%s: %s-%s-%s (%g)" % (self.name, result, pop, output, year_val)) else: vals = np.array([x.interpolate(year) for x in series_lookup[result, pop, output]]) labels.append("%s: %s-%s-%s (%g)" % (self.name, result, pop, output, year)) x.append(vals.ravel()) locations = offset + np.arange(len(x)) # TODO - force matplotlib>=3.1 to address this import matplotlib if sc.compareversions(matplotlib.__version__, "3.1") < 0: plt.boxplot(np.vstack(x).T, positions=locations, manage_xticks=False) else: plt.boxplot(np.vstack(x).T, positions=locations, manage_ticks=False) ax.set_xlim(-0.5, locations[-1] + 0.5) if offset == 0: ax.set_xticks(np.arange(locations[-1] + 1)) ax.set_xticklabels(labels) else: new_labels = [x.get_text() for x in ax.get_xticklabels()] + labels ax.set_xticks(np.arange(locations[-1] + 1)) ax.set_xticklabels(new_labels) proposed_label = "%s (%s)" % (output, series_lookup[result, pop, output][0].unit_string) if ax.yaxis.get_label().get_text(): assert proposed_label == ax.yaxis.get_label().get_text(), "The outputs being superimposed have different units" else: plt.ylabel(proposed_label) return fig
def summary_statistics(self, years=None, results=None, outputs=None, pops=None): if not self.samples: raise Exception("Cannot plot samples because no samples have been added yet") results = sc.promotetolist(results) if results is not None else self.results outputs = sc.promotetolist(outputs) if outputs is not None else self.outputs pops = sc.promotetolist(pops) if pops is not None else self.pops if years is None: years = [None] else: years = sc.promotetolist(years) series_lookup = self._get_series() records = list() for year in years: for result in results: for output in outputs: for pop in pops: if self.baseline: if year is None: baseline = self.baseline[result, pop, output].vals[0] else: baseline = self.baseline[result, pop, output].interpolate(year)[0] records.append((year, result, output, pop, "baseline", baseline)) if year is None: vals = np.array([x.vals[0] for x in series_lookup[result, pop, output]]) else: vals = np.array([x.interpolate(year) for x in series_lookup[result, pop, output]]) records.append((year, result, output, pop, "mean", np.mean(vals))) records.append((year, result, output, pop, "median", np.median(vals))) records.append((year, result, output, pop, "max", np.max(vals))) records.append((year, result, output, pop, "min", np.min(vals))) records.append((year, result, output, pop, "Q1", np.quantile(vals, 0.25))) records.append((year, result, output, pop, "Q3", np.quantile(vals, 0.75))) df = pd.DataFrame.from_records(records, columns=["year", "result", "output", "pop", "quantity", "value"]) df = df.set_index(["year", "result", "output", "pop", "quantity"]) return df def pairplot(self, year=None, outputs=None, pops=None): # Paired plot for different outputs # See https://stackoverflow.com/questions/42592493/displaying-pair-plot-in-pandas-data-frame # General # Paired plot # One plot for each population # Different colours for each result if not self.samples: raise Exception("Cannot plot samples because no samples have been added yet") outputs = sc.promotetolist(outputs) if outputs is not None else self.outputs pops = sc.promotetolist(pops) if pops is not None else self.pops series_lookup = self._get_series() figs = [] # Put all the values in a DataFrame for pop in self.pops: dfs = [] for result in self.results: df_dict = dict() # Construct a dataframe with all of the outputs, with categorical results for output in self.outputs: df_dict[output] = [x.vals[0] for x in series_lookup[result, pop, output]] df = pd.DataFrame.from_dict(df_dict) df["result"] = result dfs.append(df) df = pd.concat(dfs) colors = sc.gridcolors(len(self.results)) colormap = {x: y for x, y in zip(self.results, colors)} fig = plt.figure() ax = plt.gca() pd.plotting.scatter_matrix(df, ax=ax, c=[colormap[x] for x in df["result"].values], diagonal="kde") plt.suptitle(pop) figs.append(fig) return figs
def _sample_and_map(proj, parset, progset, progset_instructions, result_names, mapping_function, max_attempts, **kwargs): """ Helper function to sample This function runs a sampled simulation and also calls an Ensemble's mapping function prior to returning. This means that the Result goes out of scope and is discarded. Used when performing parallel simulations via `Ensemble.run_sims()` (which is used for memory-constrained simulations) """ # First, get a single sample (could have multiple results if multiple instructions) results = proj.run_sampled_sims(n_samples=1, parset=parset, progset=progset, progset_instructions=progset_instructions, result_names=result_names, max_attempts=max_attempts) # Then convert it to a plotdata via the mapping function plotdata = mapping_function(results[0], **kwargs) # Finally, return the plotdata instead of the result return plotdata